

ST. MARY MAGDALENE C OF E SCHOOL PENINSULA CAMPUS Excellence through innovation, founded in faith piece 1940

Key content knowledge and skills	Excellence through innovation, founded in faith since 1840.
Key content – knowledge and skills	National Concoron ICCos
Autumn 1: Indices and standard form,	Subject content from the National
expressions and formulae	Curriculum Framework Document
	September 2015:
Indices, calculations and estimates,	
more indices, standard form,	Pupils will be taught:
substituting into expressions, writing	
expressions and formulae, using	
formulae, rules of indices and	 To distinguish between exact
brackets, expanding double brackets.	representations of roots and
	their decimal approximations.
Autumn 2: Dealing with data and	To interpret numbers in standard
multiplicative reasoning	form A \times 10n 1 \leq A $<$ 10, where n
Planning a survey, collecting data,	is a positive or negative integer
calculating averages, display and	or zero.
analyse data, writing a report,	
Enlargement, negative and fractional	To compare numbers in
scale factors, percentage change, rates	standard form $A \times 10n \ 1 \le A <$
of change, problem solving.	10, where n is a positive or
	negative integer or zero.
Spring 1: Constructions and	To use and interpret algebraic
Equations, inequalities and	notation: $a^{2}b$ in place of a × a
proportionality	× b.
Using scales, basic constructions,	To use and interpret algebraic
constructing triangles, loci, solving	notation: b/a in place of $a \div b$.
equations, using equations, trial and	 To simplify and manipulate
improvement, using and solving	algebraic expressions to
inequalities, proportion, simultaneous	maintain equivalence:
equations.	expanding products of two or
	more binomials.
Spring 2: Circles, Pythagoras and	• To understand and use standard
prisms	mathematical formulae.
Circumference of a circle, area of a	To rearrange formulae to
circle, Pythagoras's theorem, prisms and	change the subject.
cylinders, Errors and bounds.	To describe, interpret and
	compare observed distributions
Summer 1: Sequences and graphs,	of a single variable through:
Probability	.
Nth term of a arithmetic sequence, non-	appropriate graphical
linear sequences, graphing rates of	representation involving discrete
change, using y=mx+c, more straight-line	data.
graphs, more simultaneous equations,	To describe, interpret and
graphs of quadratic functions, non-linear	compare observed distributions
graphs.	of a single variable through:
	appropriate graphical
Summer 2: Comparing shapes and	representation involving
Unit 1 of Year 10 SOL.	continuous and grouped data.

Congruent and similar shapes, ratios in triangles, the tangent ratio, the sine ratio, the cosine ratio.	 To describe, interpret and compare observed distributions of a single variable through: appropriate measures of central tendency (mean, mode, median). To describe, interpret and compare observed distributions of a single variable through: appropriate measures of spread (range, consideration of outliers) To construct and interpret frequency tables. To lllustrate simple mathematical relationships between two variables (bivariate data) using scatter graphs. To use compound units such as speed, unit pricing and density to solve problems. To construct similar shapes by enlargement without coordinate grids. To use scale diagrams. To use scale diagrams. To use maps. To use maps. To derive and use the standard ruler and compass constructions: perpendicular bisector of a line segment. To derive and use the standard ruler and compass constructions: bisecting a given analo
	-

expressed using inequality
notation $a < x \le b$
 To calculate and solve
problems involving perimeters of
circles.
 To calculate and solve
problems involving areas of
circles.
 To use Pythagoras' Theorem to
solve problems involving right-
angled triangles.
 To model situations or
procedures by using graphs
 To recognise, sketch and
produce graphs of quadratic
functions of one variable with
appropriate scaling, using
equations in x and y and the
Cartesian plane.
To reduce a given linear
equation in two variables to the
standard form $y = mx + c$.
To calculate and interpret
gradients and intercepts of
graphs of such linear equations
numerically.
To calculate and interpret aradiants and interpret
gradients and intercepts of
graphs of such linear equations graphically.
 To calculate and interpret
gradients and intercepts of
graphs of such linear equations
algebraically.
 To use linear graphs to estimate
values of y for given values of x
and vice versa and to find
approximate solutions of
simultaneous linear equations.
 To use quadratic graphs to
estimate values of y for given
values of x and vice versa and
to find approximate solutions of
simultaneous linear equations.
 To find approximate solutions to
contextual problems from given
graphs of a variety of functions:
including piece-wise linear
graphs.
a and a

	 To find approximate solutions to contextual problems from given graphs of a variety of functions: exponential graphs. To find approximate solutions to contextual problems from given graphs of a variety of functions: reciprocal graphs. To solve problems involving inverse proportion. To enumerate sets and unions / intersections of sets systematically, using tables and grids. To enumerate sets and unions / intersections of sets systematically, using Venn diagrams. To generate theoretical sample spaces for single and combined events with equally likely and mutually exclusive outcomes. To describe simple mathematical relationships between two variables (bivariate data) in observational and experimental contexts. To derive and illustrate properties of triangles, quadrilaterals, circles, and other plane figures [for example, equal lengths and angles] using appropriate language and technologies. To use trigonometric ratios in similar triangles to solve problems involving right-angled triangles.
Key assessment points	

Summative assessment will take place each half term, with spelling tests for each unit being completed on SMH formative assessments to be carried out throughout the academic year. End of topic tests will be synoptic, including questions on all content covered up to that point. Assessment will focus on understanding of the content above – each assessment will cover progress steps as outlined by Pearson education of which can be directly translated to the 9-1 scale.

Christian ethos

A Christian ethos will be promoted in Maths lessons by encouraging a sense of wonder in the natural world and a respect for all of God's creation. Students will treat each other with mutual respect and learn to work together through group and practical activities, and consider Christian views on ethical issues discussed. The incorporation of real life skills will also encourage a wider scope on the natural world and further develop students sense of wonder, mainly focused around a firm financial understanding of money, saving and its impact on the day to day.

British values

- Individual liberty in the sense of being able to develop and express one's own views, tolerance and mutual respect for one another's views is taught through the topics in which different views and/or ethics are involved. Through students
- The rule of law is addressed in units of work covering the need to have speed limits, through students understanding the need for following classroom rules.
- **Democracy** is taught through student debates when reasoning mathematically and explaining proofs.
- Group activities in Maths require students to engage in team work and show mutual respect for each other.