Subject: Mathematics. – SET 1 Long-term plan – 2 Year SOL

<u>Year 1:</u>

ST. MARY MAGDALENE C OF E SCHOOL PENINSULA CAMPUS Excellence through innovation, founded in faith since 1840.

1SeptemberStudents will be able to:2N2 apply the four operations, including formal written methods integers, decimals both positive and negative; understand and place value (e.g. working with very large or very small numbers when calculating with decimals) N3 recognise and use relationships between operations, includi inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operatio including brackets, powers, roots and reciprocals N4 use the concepts and vocabulary of prime numbers, factors6October(divisors), multiples, common factors, common multiples, higher common factor, lowest common multiple, prime factorisation ti N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for ea these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1 10 and n is an integer.	l use , and
3455607889000011122123145515112121233455555555555555555555555555565787878899999999999999999999999999999999 <td>l use , and</td>	l use , and
3integers, decimals both positive and negative; understand and place value (e.g. working with very large or very small numbers when calculating with decimals)5N3 recognise and use relationships between operations, includi inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operatio including brackets, powers, roots and reciprocals N4 use the concepts and vocabulary of prime numbers, factors 	l use , and
45560ctober78890ctober7890ctober78999 <td>, and</td>	, and
5when calculating with decimals)5when calculating with decimals)N3 recognise and use relationships between operations, includi inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operation including brackets, powers, roots and reciprocals6October7(divisors), multiples, common factors, common multiples, higher 	
N3 recognise and use relationships between operations, includi inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operation including brackets, powers, roots and reciprocals6October7(divisors), multiples, common factors, common multiples, highe common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for ea these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
inverse operations (e.g. cancellation to simplify calculations and expressions); use conventional notation for priority of operation including brackets, powers, roots and reciprocals6October7(divisors), multiples, common factors, common multiples, highe common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for eact these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	ng
expressions); use conventional notation for priority of operation including brackets, powers, roots and reciprocals6October7(divisors), multiples, common factors, common multiples, higher common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for eact these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
6Octoberincluding brackets, powers, roots and reciprocals6October(divisors), multiples, common factors, common multiples, higher common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for eact these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
6N4 use the concepts and vocabulary of prime numbers, factors6October7(divisors), multiples, common factors, common multiples, higher common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for ea these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	10,
6October(divisors), multiples, common factors, common multiples, higher common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for ea these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
7Common factor, lowest common multiple, prime factorisation, including using product notation and the unique factorisation the N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for eact these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	st
8 including using product notation and the unique factorisation th N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for ea these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	50
N5 apply systematic listing strategies including use of the prod for counting (i.e. if there are m ways of doing one task and for each these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	aoram
for counting (i.e. if there are m ways of doing one task and for each these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
these, there are n ways of doing another task, then the total num ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
ways the two tasks can be done is m × n ways) N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
N6 use positive integer powers and associated real roots (squar and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
and higher), recognise powers of 2, 3, 4, 5; estimate powers and of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	o gubo
of any given positive number N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
N7 calculate with roots and with integer and fractional indices N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	roots
N8 calculate exactly with surds; simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
(e.g. $\sqrt{12} = \sqrt{(4 \times 3)} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
N9 calculate with and interpret standard form A x 10 ⁿ , where 1	
and n is an infeger	$\leq A <$
5	,
N14 estimate answers; check calculations using approximation	and
estimation, including answers obtained using technology	
N15 round numbers and measures to an appropriate degree of	
accuracy (e.g. to a specified number of decimal places or signific	ant
figures).	
N1 use the symbols =, \neq , <, >, \leq , \geq	
N3 recognise and use relationships between operations, includi	0
inverse operations (e.g. cancellation to simplify calculations and	
expressions); use conventional notation for priority of operation	1S,
including brackets, powers, roots and reciprocals	
N8 calculate exactly with fractions	
N9 calculate with and interpret standard form A × 10n, where 1	$\leq A <$
10 and n is an integer.	
A1 use and interpret algebraic notation, including:	
• ab in place of a × b	
• 3y in place of $y + y + y$ and $3 \times y$	
• a2 in place of a × a, a3 in place of a × a × a, a2b in place of a × a	
• in place of a ÷ b	×b
coefficients written as fractions rather than as decimals	× b
brackets	× b

A2 substitute numerical values into formulae and expressions,
including scientific formulae
A3 understand and use the concepts and vocabulary of expressions,
equations, formulae, identities, inequalities, terms and factors
A4 simplify and manipulate algebraic expressions by:
collecting like terms
 multiplying a single term over a bracket
 taking out common factors
 expanding products of two binomials
• factorising quadratic expressions of the form x2 + bx + c, including
the difference of two squares;
• simplifying expressions involving sums, products and powers,
including the laws of indices
A5 understand and use standard mathematical formulae; rearrange
formulae to change the subject
A6 know the difference between an equation and an identity; argue
mathematically to show algebraic expressions are equivalent, and use
algebra to support and construct arguments and proofs
A7 where appropriate, interpret simple expressions as functions with
inputs and outputs;
A17 solve linear equations in one unknown algebraically;
A21 translate simple situations or procedures into algebraic
expressions or formulae; derive an equation, solve the equation and
interpret the solution
A22 solve linear inequalities in one or two variable(s), and quadratic
inequalities in one variable; represent the solution set on a number
line, using set notation and on a graph
A23 generate terms of a sequence from either a term-to-term or a
position-to-term rule
A24 recognise and use sequences of triangular, square and cube
numbers, simple arithmetic progressions, Fibonacci type sequences
and simple geometric progressions (rn where n is an integer, and r is a
rational number > 0), recognise and use other sequences or a surd)
A25 deduce expressions to calculate the nth term of linear sequences.
G14 use standard units of measure and related concepts (length, area,
volume/capacity, mass, time, money, etc.)
S1 infer properties of populations or distributions from a sample,
while knowing the limitations of sampling
S2 interpret and construct tables, charts and diagrams, including
frequency tables, bar charts, pie charts and pictograms for categorical
data, vertical line charts for ungrouped discrete numerical data, tables
and line graphs for time series data and know their appropriate use
S3 construct and interpret diagrams for grouped discrete data and
continuous data i.e. histograms with equal and unequal class intervals
S4 interpret, analyse and compare the distributions of data sets from
univariate empirical distributions through:
• appropriate graphical representation involving discrete, continuous
and grouped data
• appropriate measures of central tendency (median, mode and modal
class) and spread (range, including consideration of outliers)
S5 apply statistics to describe a population

		S6 use and interpret scatter graphs of bivariate data; recognise
		correlation and know that it does not indicate causation; draw
		estimated lines of best fit; make predictions; interpolate and
		extrapolate apparent trends whilst knowing the dangers of so doing.
9		Half term holiday
10	November	N2 apply the four operations, including formal written methods, to
11		integers, decimals and simple fractions (proper and improper), and
12		mixed numbers – all both positive and negative;
13		N3 recognise and use relationships between operations, including
14	December	inverse operations (e.g. cancellation to simplify calculations and
15		expressions); use conventional notation for priority of operations,
16		including brackets, powers, roots and reciprocals
		N8 calculate exactly with fractions
		N10 work interchangeably with terminating decimals and their
		corresponding fractions (such as 3.5 and or 0.375 and); change
		recurring decimals into their corresponding fractions and vice versa
		N11 identify and work with fractions in ratio problems
		N12 interpret fractions and percentages as operators
		N13 use standard units of mass, length, time, money and other
		measures (including standard compound measures) using decimal
		quantities where appropriate
		R3 express one quantity as a fraction of another, where the fraction is
		less than 1 or greater than 1
		R4 use ratio notation, including reduction to simplest form
		R5 divide a given quantity into two parts in a given part:part or
		whole:part ratio; express the division of a quantity into two parts as a
		ratio; apply ratio to real contexts and problems (such as those
		involving conversion, comparison, scaling, mixing, concentrations)
		R6 express a multiplicative relationship between two quantities as a
		ratio or a fraction
		R7 understand and use proportion as equality of ratios
		R8 relate ratios to fractions and to linear functions
		R9 define percentage as 'number of parts per hundred'; interpret
		percentages and percentage changes as a fraction or a decimal, and
		interpret these multiplicatively; express one quantity as a percentage
		of another; compare two quantities using percentages; work with
		percentages greater than 100%; solve problems involving percentage
		change, including percentage increase/decrease, and original value
		problems and simple interest including in financial mathematics
		R10 solve problems involving direct proportion.
		N7 Calculate with roots and with integer and fractional indices
		N8 calculate exactly with fractions and surds
		N15 round numbers and measures to an appropriate degree of
		accuracy (e.g. to a specified number of decimal places or significant
		figures);
		G1 use conventional terms and notations: points, lines, vertices, edges,
		planes, parallel lines, perpendicular lines, right angles, polygons,
		regular polygons and polygons with reflection and/or rotation
		symmetries;
		G3 understand and use alternate and corresponding angles on
		parallel lines; derive and use the sum of angles in a triangle (e.g. to

r	1	
		deduce and use the angle sum in any polygon, and to derive properties of regular polygons)
		G4 derive and apply the properties and definitions of: special types of
		quadrilaterals, including square, rectangle, parallelogram, trapezium,
		kite and rhombus; G6 apply angle facts, triangle congruence, similarity and properties of
		quadrilaterals to conjecture and derive results about angles and sides,
		including Pythagoras' theorem and the fact that the base angles of an
		isosceles triangle are equal, and use known results to obtain simple
		proofs G20 know the formulae for: Pythagoras' theorem a2 + b2 = c2, and the
		trigonometric ratios sine, cosine and tan; apply them to find angles and
		lengths in right-angled triangles and in two dimensional figures
		G21 know the exact values of sin θ and cos θ for $\theta = 0^{\circ}$, 30°, 45°, 60°
		and 90°; know the exact value of tan θ for $\theta = 0^{\circ}$, 30°, 45° and 60°.
17		Christmas holiday
18	January	
19		N13 use standard units of mass, length, time, money and other
20		measures (including standard compound measures) using decimal
21		quantities where appropriate
22	Fahren	A8 work with coordinates in all four quadrants A9 plot graphs of equations that correspond to straight-line graphs in
23 24	February	the coordinate plane; use the form $y = mx + c$ to identify parallel and
24		perpendicular lines; find the equation of the line through two given
		points, or through one point with a given gradient
		A10 identify and interpret gradients and intercepts of linear functions
		graphically and algebraically
		A11 identify and interpret roots, intercepts, turning points of
		quadratic functions graphically;
		A12 recognise, sketch and interpret graphs of linear functions,
		quadratic functions, simple cubic functions, the reciprocal function $y = 1/x$ with $x \neq 0$,
		A14 plot and interpret graphs of non-standard functions in real
		contexts to find approximate solutions to problems such as simple
		kinematic problems involving distance, speed and acceleration
		A15 calculate or estimate gradients of graphs and areas under graphs
		(including quadratic and non-linear graphs) and interpret results in
		cases such as distance–time graphs, velocity–time graphs (this does not include calculus)
		A16 recognise and use the equation of a circle with centre at the
		origin; find the equation of a tangent to a circle at a given point
		A17 solve linear equations in one unknown (including those with
		the unknown on both sides of the equation); find approximate
		solutions using a graph
		G11 solve geometrical problems on coordinate axes
		R8 relate ratios to fractions and to linear functions P10 solve problems involving direct properties including graphical
		R10 solve problems involving direct proportion, including graphical
		representations R11 use compound units such as speed, unit pricing.
		N8 calculate exactly with multiples of π ;
	L	

	
	N13 use standard units of mass, length, time, money and other
	measures (including standard compound measures) using decimal
	quantities where appropriate
	N14 estimate answers; check calculations using approximation and
	estimation, including answers obtained using technology
	N15 round numbers and measures to an appropriate degree of
	accuracy (e.g. to a specified number of decimal places or significant
	figures); use inequality notation to specify simple error intervals due
	to truncation or rounding
	N16 apply and interpret limits of accuracy, including upper and lower
	bounds
	R1 change freely between related standard units (e.g. time, length,
	area, volume/capacity, mass) in numerical and algebraic contexts
	G1 use conventional terms and notations: points, lines, vertices, edges,
	planes, parallel lines, perpendicular lines, right angles, polygons,
	regular polygons and polygons with reflection and/or rotation
	symmetries;
	G9 identify and apply circle definitions and properties, including:
	centre, radius, chord, diameter, circumference, tangent, arc, sector and
	segment
	G12 identify properties of the faces, surfaces, edges and vertices of:
	cubes, cuboids, prisms, cylinders, pyramids, cones and spheres
	G14 use standard units of measure and related concepts (length, area,
	volume/capacity, mass, time, money, etc)
	G16 know and apply formulae to calculate: area of triangles,
	parallelograms, trapezia; volume of cuboids and other right prisms
	(including cylinders)
	G17 know the formulae: circumference of a circle = $2\pi r = \pi d$, area of a
	circle = πr^2 ; calculate: perimeters of 2D shapes, including circles; areas
	of circles and composite shapes; surface area and volume of spheres,
	pyramids, cones and composite solids
	G18 calculate arc lengths, angles and areas of sectors of circles.
	R2 use scale factors, scale diagrams and maps
	R6 express a multiplicative relationship between two quantities as a
	ratio or a fraction
	G1 draw diagrams from written description
	G2 use the standard ruler and compass constructions (perpendicular
	bisector of a line segment, constructing a perpendicular to a given line
	from/at a given point, bisecting a given angle); use these to construct
	given figures and solve loci problems; know that the perpendicular
	distance from a point to a line is the shortest distance to the line
	G7 identify, describe and construct congruent and similar shapes,
	including on a coordinate axis, by considering rotation, reflection,
	translation and enlargement (including fractional and negative scale
	factors)
	G8 describe the changes and invariance achieved by combinations of
	rotations, reflections and translations
	G12 identify properties of the faces, surfaces, edges and vertices of:
	cubes, cuboids, prisms, cylinders, pyramids, cones and spheres
	G13 construct and interpret plans and elevations of 3D shapes
	G15 measure line segments and angles in geometric figures, including
	interpreting maps and scale drawings and use of bearings
· · ·	

		G24 describe translations as 2D vectors
		G25 apply addition and subtraction of vectors, multiplication of
		vectors by a scalar, and diagrammatic and column representations of
		vectors.
25	-	
25	-	Half term holiday
26		N1 order positive and negative integers, decimals and fractions; use
27	March	the symbols =, \neq , <, >, \leq , \geq
28	-	N8 calculate exactly with surds; simplify surd expressions
29	-	involving squares (e.g. $\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}$)
30		
		A3 understand and use the concepts and vocabulary of expressions,
		equations, formulae, identities, inequalities, terms and factors
		A4 simplify and manipulate algebraic expressions (including those
		involving surds) by: factorising quadratic expressions of the form ax2 + bx + c
		A5 understand and use standard mathematical formulae; rearrange
		formulae to change the subject
		A9 find the equation of the line through two given points, or
		through one point with a given gradient
		A11 identify and interpret roots of quadratic functions algebraically
		A18 solve quadratic equations (including those that require
		rearrangement) algebraically by factorising, by completing the square
		and by using the quadratic formula;
		A19 solve two simultaneous equations in two variables (linear/linear
		or linear/quadratic) algebraically; find approximate solutions using a graph
		A21 derive an equation (or two simultaneous equations), solve the
		equation(s) and interpret the solution.
		A22 solve linear inequalities in one or two variable(s), and quadratic
		inequalities in one variable; represent the solution set on a number
		line, using set notation and on a graph.
		N5 apply systematic listing strategies,
		P1 record, describe and analyse the frequency of outcomes of
		probability experiments using tables and frequency trees
		P2 apply ideas of randomness, fairness and equally likely events to
		calculate expected outcomes of multiple future experiments
		P3 relate relative expected frequencies to theoretical probability, using
		appropriate language and the 0–1 probability scale
		P4 apply the property that the probabilities of an exhaustive set of
		outcomes sum to one; apply the property that the probabilities of an
		exhaustive set of mutually exclusive events sum to one
		P5 understand that empirical unbiased samples tend towards
		theoretical probability distributions, with increasing sample size
		P6 enumerate sets and combinations of sets systematically, using
		tables, grids, Venn diagrams and tree diagrams
		P7 construct theoretical possibility spaces for single and combined
		experiments with equally likely outcomes and use these to calculate
		theoretical probabilities

		
		P8 calculate the probability of independent and dependent combined
		events, including using tree diagrams and other representations, and
		know the underlying assumptions
		P9 calculate and interpret conditional probabilities through
		representation using expected frequencies with two-way tables, tree
		diagrams and Venn diagrams.
31		Easter holiday
32	April	
33		N12 interpret fractions and percentages as operators
34		N13 use standard units of mass, length, time, money and other
35		measures (including standard compound measures) using decimal
36	May	quantities where appropriate
37		A2 substitute numerical values into formulae and expressions,
38		including scientific formulae
39		A9 plot graphs of equations that correspond to straight-line graphs in
		the coordinate plane; use the form $y = mx + c$ to identify parallel and
		perpendicular lines; find the equation of the line through two given
		points or through one point with a given gradient
		R1 change freely between related standard units (e.g. time, length,
		area, volume/capacity, mass) and compound units (e.g. speed, rates of
		pay, prices, density, pressure) in numerical and algebraic contexts
		R6 express a multiplicative relationship between two quantities as a
		ratio or a fraction
		R9 define percentage as 'number of parts per hundred'; interpret
		percentages and percentage changes as a fraction or a decimal, and
		interpret these multiplicatively; express one quantity as a percentage
		of another; compare two quantities using percentages; work with
		percentages greater than 100%; solve problems involving percentage
		change, including percentage increase/decrease and original value
		problems, and simple interest including in financial mathematics
		R10 solve problems involving direct and inverse proportion, including
		graphical and algebraic representations
		R11 use compound units such as speed, rates of pay, unit pricing,
		density and pressure
		R13 understand that X is inversely proportional to Y is equivalent to X
		is proportional to 1/Y; construct and interpret equations that describe
		direct and inverse proportion
		R14 recognise and interpret graphs that illustrate direct and
		inverse proportion
		R16 set up, solve and interpret the answers in growth and decay
		problems, including compound interest and work with general
		iterative processes.
		R6 express a multiplicative relationship between two quantities as a
		ratio or a fraction
		R12 compare lengths, areas and volumes using ratio notation; make
		links to similarity (including trigonometric ratios) and scale factors
		G5 use the basic congruence criteria for triangles (SSS, SAS, ASA, RHS)
		G6 apply angle facts, triangle congruence, similarity and properties of
		quadrilaterals to conjecture and derive results about angles and sides,
		including the fact that the base angles of an isosceles triangle are
		equal, and use known results to obtain simple proofs

r	1	
		G7 identify, describe and construct congruent and similar shapes, including on coordinate axes, by considering rotation, reflection, translation and enlargement (including fractional and negative scale factors)
		G17 calculate: surface area and volume of spheres, pyramids, cones and composite solids
		G19 apply the concepts of congruence and similarity, including the relationships between lengths, areas and volumes in similar figures. N16 apply and interpret limits of accuracy, including upper and lower bounds
		A8 work with coordinates in all four quadrants
		A12 recognise, sketch and interpret graphs of linear functions,
		quadratic functions, simple cubic functions, the reciprocal function $y = 1/x$ with $x \neq 0$, exponential, functions
		y = kx for positive values of k, and the trigonometric functions (with
		arguments in degrees) $y = \sin x$, $y = \cos x$ and $y = \tan x$ for angles of any size
		A13 sketch translations and reflections of a given function
		G20 know the formulae for: Pythagoras' Theorem $a^2 + b^2 = c^2$ and the
		trigonometric ratios, sine, cosine and tan; apply them to find angles
		•
		and lengths in right-angled triangles and, where possible, general
		triangles in two and three dimensional figures $(22 \text{ km} \text{ super stars}) = h((23 \text{ km} \text{ super stars})) = h((23 \text{ km} \text{ super stars}))$
		G22 know and apply the sine rule a/(sin A) = b/(sin B) = c/(sin C), and cosine rule
		$a^2 = b^2 + c^2 - 2bc \cos A$, to find unknown lengths and angles
		G23 know and apply Area = $(1/2)$ ab sin C to calculate the area, sides
4.0		or angles of any triangle.
40	June	Half term holiday
41	_	S1 infer properties of populations or distributions from a sample,
42	_	whilst knowing the limitations of sampling apply statistics to describe
43		a population
44	July	S3 interpret and construct diagrams for grouped discrete data and
45	1	continuous data, i.e. histograms with equal and unequal class intervals
46		and cumulative frequency graphs, and know their appropriate use
		S4 interpret, analyse and compare the distributions of data sets from
		univariate empirical distributions through:
		Appropriate graphical representation involving discrete, continuous
		and grouped data, including box plots
		• appropriate measures of central tendency (median, mean, mode and
		modal class) and spread (range, including consideration of outliers,
		quartiles and inter-quartile range).
1	1	END OF YEAR MOCK EXAMINATIONS

<u>Year 2:</u>

Week	Month	Learning Intentions and/or Key Questions
1	September	Students will learn / be able to:
2		N8 Calculate exactly with surds
3		A4 simplify and manipulate algebraic expressions by: expanding
4		products of two or more binomials
5		

		A11 identify and interpret wasta interpret to the second
		A11 identify and interpret roots, intercepts, turning points of
1		quadratic functions graphically; identify turning points by completing the square
		A12 recognise, sketch and interpret graphs of quadratic functions,
		simple cubic functions
6	October	A18 solve quadratic equations (including those that require
7	October	rearrangement); find approximate solutions using a graph
8		A19 solve two simultaneous equations in two variables (linear/linear
0		or linear/quadratic) algebraically; find approximate solutions using a
		graph
		A20 find approximate solutions to equations numerically using
		iteration
		A21 derive an equation (or two simultaneous equations), solve the
		equation(s) and interpret the solution.
		A22 solve linear inequalities in one or two variable(s), and quadratic
		inequalities in one variable; represent the solution set on a number
		line, using set notation and on a graph.
		A16 recognise and use the equation of a circle with centre at the
		origin; find the equation of a tangent to a circle at a given point
		G9 identify and apply circle definitions and properties, including:
		centre, radius, chord, diameter, circumference, tangent, arc, sector and
		segment
		G10 apply and prove the standard circle theorems concerning angles,
		radii, tangents and chords, and use them to prove related results.
9		Half term holiday
10	November	N8:simplify surd expressions involving squares (e.g. $\sqrt{12} = \sqrt{(4 \times 3)} =$
11		$\sqrt{4} \times \sqrt{3} = 2\sqrt{3}$) and rationalise denominators
12		A4 simplify and manipulate algebraic expressions (including those
13		involving surds and algebraic fractions) by:collecting like terms
14	December	multiplying a single term over a bracket
15		
15 16		• taking out common factors
-		 taking out common factors expanding products of two or more binomials
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers,
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite
-		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected)
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected) A18 solve quadratic equations (including those that require
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected) A18 solve quadratic equations (including those that require rearrangement) algebraically by factorising.
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected) A18 solve quadratic equations (including those that require rearrangement) algebraically by factorising. G25 apply addition and subtraction of vectors, multiplication of
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected) A18 solve quadratic equations (including those that require rearrangement) algebraically by factorising. G25 apply addition and subtraction of vectors, multiplication of vectors by a scalar, and diagrammatic and column representations of
		 taking out common factors expanding products of two or more binomials factorising quadratic expressions of the form x2 + bx + c, including the difference of two squares; factorising quadratic expressions of the form ax2 + bx + c simplifying expressions involving sums, products and powers, including the laws of indices A5 rearrange formulae to change the subject A6 argue mathematically to show algebraic expressions are equivalent, and use algebra to support and construct arguments and proofs A7 where appropriate, interpret simple expressions as functions with inputs and outputs; interpret the reverse process as the 'inverse function'; interpret the succession of two functions as a 'composite function' (the use of formal function notation is expected) A18 solve quadratic equations (including those that require rearrangement) algebraically by factorising. G25 apply addition and subtraction of vectors, multiplication of

18	January	
19		A7 where appropriate, interpret simple expressions as functions with
20		inputs and outputs;
21		A12 recognise, sketch and interpret graphs of the reciprocal function y
22		= $1/x$ with $x \neq 0$, exponential functions $y = kx$ for positive values of k
23	February	and integer values of x
24		A13 sketch translations and reflections of a given function
24		 A14 plot and interpret reciprocal graphs and exponential graphs A15 calculate or estimate gradients of graphs and areas under graphs (including quadratic and other non-linear graphs) and interpret results in cases such distance-time graphs, velocity-time graphs and graphs in financial contexts (this does not include calculus) R7 understand and use proportion as equality of ratios R10 solve problems involving direct and inverse proportion, including graphical and algebraic representations R13 understand that X is inversely proportional to Y is equivalent to X is proportional to 1/Y; construct and interpret equations that describe direct and inverse proportion R14 interpret the gradient of a straight line graph as a rate of change; recognise and interpret graphs that illustrate direct and inverse proportion R15 interpret the gradient at a point on a curve as the instantaneous rate of change; apply the concepts of average and instantaneous rate of change (gradients of chords and tangents) in numerical, algebraic and graphical contexts (this does not include calculus
		R16 set up, solve and interpret the answers in growth and decay
		problems, including compound interest.
25		Half term holiday
26		The SOL will be complete for our top set students – this will allow for
27	March	March Mocks and revision. The QLA from year 11 mocks will enable
28		teachers to tailor lessons to fill any gaps in learning.
29		
30		
31	7	Easter holiday
32	April	
33		
34	7	
35		
36	Мау	GSCE EXAMINATIONS BEGIN
37		
38		
39		tt-164 h-124
40	June	Half term holiday
41	_	
42	_	
43		
44	July	
45		